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This paper presents incomplete decompositions for various types of matrices as they occur 
in the implicit discretisation of practical problems. A review is given of methods for the usual 
five-point discretisation of a self-adjoint elliptic second-order partial differential equation in 
two dimensions on a square. The matrices which occur in this type of problem are symmetric 
M-matrices of very regular structure. The convergence behaviour of the different decom- 
positions for this case is demonstrated by numerical experiments. The paper also gives decom- 
positions for the following type of matrices: (i) Symmetric M-matrices of a different structure. 
(ii) Symmetric positive definite matrices. (iii) Non-symmetric matrices. 

1. INTRODUCTION 

In Ref. (81 the idea of constructing an approximation K for arbitrary sparse M- 
matrices* A by incomplete LlJ factorisation was introduced. The matrix K has the 
property that any system Ku = w can be solved much easier than Ax = b. This led to 
the iterative method xntl - - xn + K- ‘(b -Ax”) for the solution of Ax = b. Also it 
has been proven that the splitting A = K - R is regular2, which implies that the 
iterative method always converges. For symmetric matrices A, these decompositions 
were used as preconditionings for the conjugate gradient algorithm. In the examples 
given in Ref. [8] matrices were considered arising from five-point discretisation of a 
self-adjoint elliptic partial differential equation on a rectangular region. Only two 
different incomplete decompositions were demonstrated. 

In this paper we present a more systematic review of the possible incomplete 
decompositions for that problem (Section 2.1). In addition, we shall discuss incom- 

* Supported in part by the European Research Office, London, through Grant DA ERO-75-G-084. 
1 A = (a,) is an M-matrix if au < 0 for i #j, A is non singular and A -I 2 0. 
’ The splitting A = M - N is a regular splitting if M is non singular, M-’ > 0 and N > 0. 
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plete decompositions for other types of matrices, e.g., M-matrices arising from 
problems with periodic boundary conditions (Section 2.2) an M-matrices with a 
more arbitrary structure (Sections 2.4 and 2.5). For this purpose we need an 
extension of the definition of an incomplete decomposition given in the proof of 
Theorem 2.3 in Ref. [8]. In the process defined there some off-diagonal elements were 
omitted after each elimination step. If, instead of omitting some off-diagonal elements, 
we replace them by negative elements which are smaller in absolute value, or if 
diagonal elements are replaced by larger ones, the construction process does not 
break down and the resulting incomplete decomposition ‘LU’ defines a regular 
splitting of A. This new process describes the extended concept of incomplete decom- 
positions. A specific example of this process is the following: In the kth ste 
Gaussian elimination process elements are eliminated with the kth row. This may 
cause three effects: 

6) zero off-diagonal elements turn to negative non-zero values; 

(ii) non-zero off-diagonal elements become smaller (although larger in 
absolute value); 

(iii) diagonal elements become smaller (but remain positive); 

thus omitting to carry out the elimination corrections for some of the elements of the 
matrix results in an incomplete decomposition. Examples of this type sf decom- 
position are given in Sections 2.1.2, 2.1.3, 2.4 and 2.5. 

Other approximate factorisations are discussed by Stone ] 1 l], Dupont el izi. [3]? 
Gustafsson [5] and Wong 1151. They all introduce one or more parameters into the 
decomposition process to accelerate the convergence. In particular the condition 
numbers of their preconditioned matrices are in the limit proportional to the mesh 
parameter l/h wbereas the methods described in this paper lead to condition numbers 
proportional to l/h*. The property of regular splitting is lost in most of their 
examples. 

Kershaw [6] and Manteuffel [7] provide extensions for positive definite matrices. 
We shall describe these briefly and present another one in Section 3. 

Incomplete decompositions for p.d.e.‘s in three dimensions are treated in 
Section 2.3. In Section 4 algorithms for non-symmetric matrices are described. 

In Section 5 convergence results as well as ‘eigenvalue’ information on the decom- 
positions descri.bed in Section 2.1 are given for some specific examples, 

2. INCOMPLETE DECOMPOSITIONS FOR SYMMETRIC M-MATRICES 

2.1. Five-Point Discretisation of Elliptic Partial Differential Equations in Two 
Dimensions 

The linear equations in this section arise from five-point discrete approximation to 
the second-order self adjoint elliptic partial differential equation: 
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- g (4(x, y) g u(x, p, ) - ; (B(x, y> $ qx, Yl) + WY Y> 4% Y) = % u) 
(2.1.1) 

with A(x, y), B(x, y) > 0, C(x, y) > 0 and (x, y) E R, where R is a rectangular region. 
Along the boundary 611 of R the boundary condition 

a(x, y) u(x, y) + P(x, v) f 4x, u> = Y(X, Y) 

holds, with a@,~), p(x, y) > 0 and CL(X, y) + /3(x,y) > 0 and where a/&r is the 
outward derivative perpendicular to 611. The structure of the resulting symmetric M- 
matrix A of order N is shown in Fig. 1. The elements of the diagonal of A are denoted 
by ai, those of the lirst upper diagonal by bi and those of the mth upper diagonal by 
ci, where i is the index of the row of A in which the respective elements occur, and m 
is the half bandwidth of the matrix. For the derivation of such linear systems see 
Ref. [14]. 

2.1.1. Diagonal scaling. The simplest permissible choice for an incomplete LU- 
decomposition .K is the diagonal of A. The resulting conjugate gradient method is the 
same as the c.g. method applied on the matrix scaled by its diagonal. This scaling is 
in some respects optimal, since it approximately minimises the condition number of 
K-’ A among all diagonal scalings [lo]. If A has property (A) it is the optimal 
diagonal scaling [2,4]. If the equation is scaled in advance, the number of 
multiplications is 10 N per iteration. If not, this number will be 11 N. The total 
amount of storage is seven arrays of length A? 

A= 

I TWO DIMENSIONAL I 

FIG. 1. Matrix of Section 2.1. 
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FIG. 2. Matrices of L:$, and II,,, (Section 2.1.2). 

2.1.2, ICCG(l, 1) and SSOR(o = 1). Here the matrix I( is chosen so that its 
decomposition factor L* has the same sparsity pattern as the upper triangular part of 
A. This decomposition has been considered by many authors [J, 5,8, 11, 131. 

It is convenient to write this decomposition as K,,, = L1,,D,,,ET,,, where Ly.1 is 
an upper triangular matrix and D,,, a diagonal matrix equal to the inverse of the 
main diagonal of L,,, . In common with the elements of A, those of L,, 1 are denoted 
by Zi, & and c?~ and those of D,,, by c?, (see Fig. 2). The following relations are easily 
verified: 

~i=J~l=ai-Q-,J. -q-,J. 
l-1 l-m 

fii=bi and Ci=ci 
for i = 1, 2,..., N. 

In these relations the non-defined elements are zero. Only extra storage for the 
elements 2, is required. The resulting hybrid conjugate gradient method is called 
ICCG(1, 1). The indices are used to indicate that there is one non-zero diagonal next 
to the main diagonal and one non-zero diagonal at the outer side of the band. This is 

FIG. 3. Matrix K,,, (Section 2.1.3). 
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L T 1.2' 

\ 

FIG. 4. Matrices Ly,, and D,,, Section 2.1.3). 

ZCCG(0) of Ref. [8]. The number of multiplications for this method is l&V 
multiplications per iteration, and the memory requirements are 8N words. 

The SSOR(w = 1) decomposition arises if all Gaussian elimination corrections are 
neglected. Thus SSOR(cc, = 1) is an example of the extended class of incomplete 
decompositions mentioned in Section 1. The number of multiplications remains the 
same as for ZCCG(I, I), but one array of storage has been saved. For the use of 
SSOR as a preconditioning technique see Ref. [ 11. 

2.1.3. ZCCG(1, 2). The matrix K,,, =L,,,D,,,LT,, of the previous section is a 
matrix equal to A, except for two diagonals adjacent to the outermost two diagonals, 
as indicated by the dotted lines in Fig. 3. By including non-zero entries on those lines 
in L and LT, we expect to improve the approximate decomposition. This approx- 
imation will be written as 

K,,, =L,,,D,,,L:,,, 

where D, 2 is the diagonal matrix equal to the inverse of the main diagonal of LT,,. 
The elements of LT,2 are denoted by zi, 6;., ci and ?i and those of D,,, by zi (see 
Fig. 4). The elements ii, 6i, fi, zi and ci can be computed recursively from 

Ci=qT1=ai-6j!_, CT-1 -ey-,+, d;:_,+,-~_m~i-m 

&=bi-Ei-,+l &-m+ll?--m+l 

ci= -~~i-,i?-J_, 
for i = 1, 2 ,..., N. 

Fi = ci 

The nondefIned elements are all zero. 
Storage is required for three arrays of length N. The number of multiplications 

necessary for each iteration step of the resulting hybrid conjugate gradient method 
ZCCG(l,2) is equal to lSN, and the memory requirements are 1ON words. 

In order to save computer storage (one array) the relatively small correction on Si 
can be omitted. Thus 6; = b,. This is another example of the extended class of incom- 
plete decompositions and will be denoted by ZCCG( 1 *, 2). 

2.1.4. ZCCG( 1, 3). The matrix K,,, is equal to A, except for the two dotted 
diagonals as indicated in Fig. 5. These non-zero elements can be eliminated by 
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FIG. 5. Matrix K,., (Section 2.1.4). 

introducing an extra diagonal in LT (see Fig. 6). The elements on these diagonals will 
be denoted by x. This incomplete decomposition will be denoted by 

KI,, =Ll,3~‘,&~ 

The elements of D,,3 and Ly,3 can be computed from: 

The non-defined elements are zero. 

i = 1, 2,..., IV. 

\l - - - b I fi i i Ci 
T 

L1.3’ 
\ 

\ 

\ 

I 

Dt.3 = 

\ 

FIG. 6. Matrices L:,, and D,,, (Section 2.1.4). 
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FIG. 7. Matrix K,,3 (Section 2.1.5). 

The resulting ICCG(1, 3) process necessitates about 20N multiplications per 
iteration and requires 11 arrays of length N. 

2.1.5. ICCG(2,4). Unlike K,,, and Kl,z, K,,, differs from A by four non-zero 
diagonals (Fig. 7). To eliminate these, two more non-zero diagonals in LT are 
necessary. The elements on these diagonals are denoted by r;;: and gi (Fig. 8). This 
incomplete decomposition is written as 

&,‘I = L*,A,J& 

and the elements of Lc,4 and D,,, follow from 

~i=~~‘=Ui-b~_,~ii--l-~-*ai-*-g”iZ_,+3di-,+3-~-m+S~i-,+2’ 

-e~-,,,~i-,,,-c~-,~i-m, 

&= bi- Ki-lJi-,b;:-, -..$-m+3Ji-,+3gipm+3 - ci-m+2Jiwm+J~-m+2 

-Ci-m+l~i-m+lzi-m+l~ 

);i=-~ii-m+3~-,+,g”i-m+3 -C;.-~+2~i-m+Z..f-m+2~ 

gi=-e;.--2~--2~i;.--2-~:-,~-,~i--1, 

~=-C;.-,a;,-,~_,-~i_,~.-,~.-,, 

.5Ti=-?iJ-,&-,, 

zi = ci, 

The non-defined elements are zero. 

> i = 1, 2 ,..., N. 

/ 
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FIG. 8. Matrices Z& and D2,4 (Section 2.1.5). 

The resulting ICCG(2,4) process necessitates about 24N rn~ltiplic~t~o~~ per 
iteration and requires 13 arrays of length N. 

If instead of the two extra diagonals ii and g” in LT we take only the K diagonal, the 
ICCG(3) method of Ref. [ I] results. This method is denoted in this report by 
PCCG(2,3). 

21.6. Some other decompositions. F’roceeding in this manner we obtain a 
sequence of incomplete decompositions K3,6, K5,9, KS,i4, Ki3,SZ, etc, resulting in an 
increasingly rapid convergence. From the indices we see that the number of non-zero 
diagonals grows rapidly and thus the amount of work. However, only adding the two 
diagonals next to those of the previous decomposition will cover most of the 
convergence improvement. In this way, K3,5’, K4,6, etc., together with the 
corresponding ICCG methods ICCG(3,5), ICCG(4,6) etc., are developed. 

Up to now we have always added complete diagonals in the decomposition 
process. The diagonals, however, contain their non-zero entries only in a block 
structure (see Fig. 9). In particular, this implies that in our terminology a complete 
Choieski factorisation is equivalent to “incomplete decomposition” with 2m - 2 extra 
““diagonals.” 

FIG. 9. Structure of Choleski factorisation. 
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A= 

FIG. 10. Matrix A for periodic boundary conditions (Section 2.2). 

2.2. Five-Point Discretisation for Problems with Periodic Boundary Conditions 

The linear equations in this section arise in the same way as the linear equations in 
Section 2.1, except that a periodic boundary condition holds in at least one direction. 
In the examples we have restricted ourselves to a periodic boundary condition in the 
x-direction. This boundary condition gives rise to additional elements in the matrix A, 
as indicated in Fig. 10. These extra elements are denoted by pi. Since i is the row 
index, only A , P, + , , PZm + , ,... are non-zero. Again A is an M-matrix. 

2.2.1. ICCG(1, 1). In common with the non-periodic case in 2.1.1 an incomplete 
decomposition can be constructed in cases where the upper triangular factor has the 
same sparsity structure as the upper triangular part of A. This decomposition is 
written as 

K,,, =L,,P&,,~ 

The elements of Lr,, and D,,, can be calculated from 

a;-=~,~‘=ai-b~-‘_,a;._,-Pi2_,+1d~_,+,-C”i2_,~i--m, 

b;:=bi, Pi =IQi, 
i = 1, 2 ,..., N. 

Fj = cj, 

Non-defined elements are zero. Note that the term j?-,,,+ i L?-~+ 1 # 0 only, if i = m, 
2m, 3m,.... The resulting 1CCG(l, 1) process again takes approximately 16N 
multiplications per iteration, and needs 8N words. 
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2.2.2. ICCG(1, 2). The matrix K,,, of 2.2.1 has elements as indicated in Fig. Il. 
To annnihiiate these elements in L*, non-zero elements are required in these places. 
These elements are denoted as shown in Fig. 12 by C,, .) &, qTj, F, and the 
elements of LB,,, by &. They can be calculated from 

~i=~~‘=Uj-~-,ai:_,-~_,+,ai_,+,-~-,ai_, 

--$-!_,LI-, (onlyfori=m+ 1,2m$1,3m+ l,--) 

-j$- m+Zdi--m+2 -@--m+IJi-,+l (only for i = m, 2m ---I, 

&=bi-izi_ m+lai--m+lzi--m+l (only for i $ m, 2m ---), 
i = 1, 2, 3,... IV. 

ci = ci, 

tZi = --C;._,C?-,~“~-, (only for if I, m + I---), i 

~i=--e”i_mi,~i_,,,Yi-mfZ-~’ CT’ p. I--m+1 r--m,1 l-m+19 i = m, 2m, ---, 

yi=-pi-izi-16J-1, i=2,m+2,2m42,---, 

“$=~p,-~~-,d;-,&-,, i= l,m+ I,2m+ l,---. 

Note that 6,, &, , --- and C, , C,, r, --- are nonexistent. The resulting ICCG 
process takes 18N multiplications per iteration and requires roughly three arrays of 
length N for the incomplete decomposition. 

2.2.3. ICCG( 1, 1) periodic. The incomplete decomposition of 2.2.1 does not have 
a periodic structure. To obtain a K with a periodic structure we write 

K, = (LP + D; ‘) D,(L; + “; “). 

FIG. 11. Matrix K,,, (Section 2.2.2). 

581/44/l-10 
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FIG. 12. Matrix LT,* (Section 2.2.2). 

The periodic structure of the matrix L, is given in Fig. 13. Dp is a diagonal matrix. 
The elements of L, and D, have to satisfy: 

Fi = bi, ci = ci, &=Pi for i = 1,2, ---., N, (2.2.3.1) 

~i=~~~‘=ai-~-‘_,~i_l-~_,~i_m for i = 2, 3, --, m, m + 2, m f 3, --, 
2m, 2m i- 2, ---, N, (2.2.3.2) 

a”i=~~~‘=ai--~i+,_,-~_,~i_, fori=1,m+1,2m+l,--,N--m+l. 

(2.2.3.3) 

The L?, cannot be calculated straightforwardly, since in the second formula c?~+~- 1 is 
present. We can calculate them by substituting (2.2.3.3) into (2.2.3.2) for the next i, 
and continuing in this way, we find quadratic equations for the a,,,. For &, we 
choose the largest root, since this choice results in smaller elements ~i-,~Ii_‘, ~7-r in 
the error matrix K, --A. We now give the derivation for the formula for a,. The a,,,, 
can be computed in a similar way. We rewrite (2.2.3.3) as 

cy=wl-v,d, (2.2.3.4) 

and (2.2.3.2) as 

LTIT1 = Wj- ViJi-l, i=2,---m 7 (2.2.3.5) 
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FIG. 13. Matrix I,,’ (Section 22.3) 

From induction it follows that: 

2, = Pi + 4iam 
I ri + Sial, 

for i = 1, 2, ---, m. 

The coefficients pi, qi and si satisfy 

PI = 1, 41=0, rl = wl, s,=-v,, Pi+lEri, 4i+i zsi: 

ri+l = w(+ 1 ri - vi+ IPi, sit I = W&,Si - vi+,qi. 

This leads to the quadratic equation in d, with known coefficients p,, qm, r, and s, : 

from which the largest root can be calculated. 

2.3. Seven-Point Discretisations of Elliptic p.d.e.‘s in Three Dimensions 

The seven-point discretisation for Eq. (2.1.1) in three dimensions lea 
way to a matrix with seven non-zero diagonals. The structure of this matrix A is 
shown in Fig. 14. The elements of the upper triangular part of A are demoted by 
ai, 6,, cI and ei, where i is counted by the row. If IZ, m, k are the number of gridpoints 
in the X, y, z directions, respectively, the order of the matrix and the sizes of the 
blocks are nmk, nm and K 

2.3.1. ICCG(1, 1, 1). In common with the 2-D case the rCCG(l., I, I) 
factorisation is the one where the upper triangular factor has the same non-zero 
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FIG. 14. Matrix A for three-dimensional problems. 

structure as the upper triangular part of A. Again this decomposition is written as 
K -L,,d4,&,l,,~ where L& l,l,l - is an upper triangular matrix and D, ,1, 1 a 
diagonal matrix equal to the inverse of the main diagonal of LF,,,, . The elements of 
LT.,,, are denoted by cY,, b;:, Fi and .s?~ and the elements of D,,,,l by ai. These elements 
are given by the recurrency relations: 

~i=~~l=ai-b~-,~i_,-~f & z-n r-n -,“,‘-,,&,, 
for i = 1, 2, ---, nmk. 

Fi = bi, Ei = ci and Zi = ej 

FIG. 15. Matrix K,. , , 1 (Section 2.3.1). 
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Pdon-defined elements should be replaced by zeros. It can easiiy be seen that fsr 
major problems where the diagonals cannot be stored all together in core, the can 
be calculated by taking successively only parts of the order of n X m into core. 

The resulting hybrid conjugate gradient method requires 20N multipiications per 
iteration, and 9N words for storage. 

2.3.2. Other decompositions for 3-D. The matrix K,,,,, =L, ,,., J~~,,,,LT,~,~, of 
the previous section is a matrix equal to A, except for six diagonals, as shown in 
Fig. 15 as dotted lines. We obtain another decomposition by including non-zero 
entries on these lines in L and LT. The elements of LT are denoted by c?(, Ji, Ei, Zil$, 
& and lj, as shown in Fig. 16, and can be calculated from: 

i = 1,2, --- mnk, 

Six arrays of length N are required to store the non-zero diagonals of LT. The 
resulting ICGG method requires 26N multiplications per iteration 

FIG. 16. Matrix L’ (Section 2.3.2). 
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Unfortunately, if we proceed in this manner the number of diagonals in the subse- 
quent decompositions will increase rapidly. For instance, the next decomposition has 
12 non-zero diagonals in its upper triangular part. The resulting ICCG method takes 
36N multiplications per iteration. 

2.4. M-Matrices Arising from Five-Point Discretisations on Irregular Regions 

SO far we have only considered discretisations on square regions. We are now 
going to comment on regions with internal boundaries (no-flow boundaries) or 
differently shaped regions. For convenience it will be assumed that the region consists 
of small squares. 

An internal boundary is reflected by some extra zeros in the matrix, but the matrix 
remains a symmetric M-matrix, thus incomplete decompositions can be constructed 
as before. An internal boundary implies that there is no direct connection (no flow) 
between points on different sides of the boundary. This property is preserved in each 
of the above-mentioned decompositions. This in contrast with Stone’s SIP method 
[Ill, where the use of the iteration parameter may cause a connection through a no- 
flow boundary. 

Irregularly shaped regions can be extended in an obvious way to square regions 
with an internal boundary at the point of the original real boundary. The linear 
system arising from this extended region can be treated as before, bearing in mind 
that the extended parts do not require computational work. If the true boundary does 
not coincide with meshpoints, the discretisation may lead to an irregular non-zero 
structure. This will be considered in the following section. 

2.5. M-Matrices with an Irregular Non-zero Structure 

M-matrices with an irregular non-zero structure arise, for instance, from some 
finite-element methods on irregular meshes [ 121 and pipeline networks [ 91. 

We write the matrix A as A = L + D + U, where L, U are strictly lower and upper 
triangular, respectively, and D the diagonal of A. If we omit all Gaussian elimination 
corrections on off-diagonal elements (see Section I), then the incomplete decom- 
position is given by K, = (L + D,) D;‘(D, + U). 

D, is determined by the relation that the diagonal of K,, -A, which is equal to the 
diagonal of D, + diag(lD;’ U) -D, is zero. 

If the matrix is symmetric, this decomposition can be combined with the conjugate 
gradient method. For non-symmetric matrices see Section 4. 

3. ALGORITHMS FOR SYMMETRIC POSITIVE DEFINITE MATRICES 

If the matrix is not an M-matrix, the construction of an incomplete decomposition 
may fail because of the occurrence of non-positive diagonal elements [6]. Small 
positive diagonal elements are also undesirable because of stability problems. 
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Three different strategies which seem to overcome this problem have currently been 
proposed: 

(i) If a diagonal element of less than a prescribed positive value is encountered 
during the construction of the incomplete LLT decomposition then some already 
computed off-diagonal elements in the corresponding column of LT are set to zero. 

(ii) The diagonal element is enlarged if necessary [6]> e.g., by ~cg~cct~~g some 
of the Gaussian elimination corrections (see Section 1). 

(iii) We can also add a1 to the matrix 171, If a is large enough, the problems 
signalled will not occur. 

Strategy (ii) has the advantage over (i) that the Gaussian elimination process is cut 
short 1 step later. Further if, e.g., K, as defined in Section 2.5 is applied strategy (I) 
needs extra memory to denote which elements have been set to zero. 

Strategy (iii) has the disadvantage that the whole diagonal is affected whereas often 
only local corrections are required. We prefer strategy (ii) to the others. 

4. ALGORITHMS FOR NON-SYMMETRIC MATRICES 

If the matrix is non-symmetric, then an incomplete LU decomposition K can 
constructed in a similar way as described previously for the symmetric matrices. 
Since symmetry and positive-definiteness are both required for the conjugate gradient 
algorithm, the CG algorithm can be applied to: 

This algorithm requires twice as much work per iteration as the corresponding 
symmetric case and the upper bound for the number of iterations increases, It has 
been considered in more detail by Kershaw 161. 

5. NUMERICAL EXPERIMENTS 

To obtain an impression of the convergence behaviour of different i~c~rn~lct~ 
decompositions, we have, for the ICCG methods introduced in Section 2.1, 

(i) compared the convergence results, 
(ii) calculated the eigenvalue distribution of the preconditioned matrices R- ‘,4 ~ 

The two test problems were: 
(i) Problem 1. The five-point discretisation of the Poisson equation du = 0 

over 0 < x < 1, 0 < y < 1 with boundary conditions au/ax = 0 for x = 0 an 
&lay = 0 for y = 1 and u = 1 for y = 0. A uniform rectangular mesh was 
with Ax = l/3 1 and Ay = l/31, which resulted in a linear system of 992 equations. 
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The solution of this equation is known to be z&y) = 1 and as initial starting vector 
for the iterative schemes a vector was chosen with all entries random between 0 and 
1. This was done to prevent coincidental fast convergence. 

(ii) Problem 2. This problem has been taken from Varga [14]. Equation 
(2.1.1) holds for R, where R is the square region 0 < x,y < 2.1 as shown below: 

On the boundary of R, the boundary conditions are au/&z = 0. Further, D(x, y) = 0 
over R and the functions A, B and C are given by 

Region A 6, Y> W, Y> C(x, Y) 

1 1.0 1.0 0.02 
2 2.0 2.0 0.03 
3 3.0 3.0 0.05 

A uniform rectangular mesh was chosen with 0.05 mesh spacing, so that a system of 
1849 linear equations resulted. The solution of the system is known to be u = 0. A 
vector similar to the one in problem 1 was chosen as starting vector. 

In Tables I and II the convergence results are listed. In both tables we see that in 
general the amount of work decreases when extra diagonals are included according to 
the patterns described in Section 2. Including other diagonals does not lead to further 
improvements, e.g., ICCG(I, 4), ICCG(2,5) and ICCG(3,4). Taking into account the 
amount of storage required and the complexity of programming we conclude that 
ICCG(1,3) is a good choice. 

Since the convergence behaviour depends on the eigenvalue distribution of the 
preconditioned matrix, where the condition number and clustering play an important 
role, a number of the largest and smallest eigenvalues have been calculated for the 
matrix of problem 1 preconditioned with several incomplete decompositions. The 
eigenvalues are all divided by the smallest eigenvalue amin, because an upper bound 
for the convergence factor of the conjugate gradient method is given by 
(dc - W(dc + 11, w h ere the condition number c = ,$,&jlmin. The distribution of 
these scaled eigenvalues has been plotted in Figs. 17-2 1. 
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FIG. 17. Distribution of scaled eigenvalues of A. 
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FIG. 18. Distribution of scaled eigenvalues of K,: A. 

From these figures we see that the condition c of the ~reco~ditio~e~ matrix 
decreases rapidly with an increasing number of diagonals. Also, the rnajo~~t~i of 
eigenvaiues are concentrated in intervals which become smaller and smaller in 
relationship to c. Comparisons with other methods for both these examples have been 
described in Ref. [S], 
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